Xenomai User Meeting
2009

Dresden,
September 28, 2009

Philippe GERUM - rpm@xenomai.org
Where Do We Come From?

- RTOS emulation project, July 2001
 - Help migrating applications to Linux
 - Depending on other real-time cores
- Adeos, June 2002
 - Xenomai-originated dual kernel technology
- The RTAI episode, January 2003
 - Do, listen and learn
- Xenomai reloaded, October 2005
Where Are We Now? (1/3)

- Our strengths
 - Dual kernel technology is mastered
 - Decent release quality
 - Decent high-level documentation
 - Stable API and ABI within a stable series
 - Same level of support across CPU architectures
 - Latest stable series maintained 12+ months
Where Are We Now? (2/3)

- Our weaknesses
 - Dual kernel technology is mastered, but...
 - Beware of sleep induction
 - I-pipe maintenance is overconsuming
 - We live in isolation
 - Pace of major releases is slowing down too much
 - Goal is ~12 months
 - Too few contributors / maintainers
 - No dedicated release engineer
Where Are We Now? (3/3)

- What did not work out so far?
 - ”Xenomai ..., who?”
 - xenomai.org is not lively enough
 - Not enough traffic on xenomai-core
 - No significant extension of the real-time device driver set
 - No significant extension of the RTOS emulator set
The Landscape Is Changing

- Full PREEMPT_RT technology close to mainline
 - Vs dual kernel, really?
- More legacy RTOS applications to migrate to Linux
 - The emulation coverage issue
 - The virtualization challenge
- More legacy Linux applications to go *native*
 - Is there a life beyond POSIX?
 - Where is the real-time device driver factory?
Where Do We Want To Go?

- Xenomai 3
 - Keep on providing real-time APIs
 - Rely on native real-time whenever possible
 - Provide dual kernel option when necessary
 - More embedded CPU architecture ports
 - Increase coverage of API emulation
- Beyond Xenomai 3
 - Help preserving legacy application design
How Do We Do This? (1/3)

- Our dual kernel architecture will evolve
How Do We Do This? (2/3)

- A native architecture will emerge

Diagram: A Native Architecture Flow Diagram
- Blue Core
- RTDM
- Linux kernel
- glibc
- RTOS abstraction layer
- Real-time skins
- User-space application
How Do We Do This (3/3)

- Major development milestones for Xenomai 3.x
 - Evolve the xenomai-solo core:
 - Rebase over the resident POSIX skin for the red core
 - Introduce inter-process objects in the blue core
 - Enable the native API over the blue core
 - Enable the emulators over both red and blue cores
A Shift In Paradigm

- Native real-time supported when available
 - When the native API is enabled over the *blue core*
 - When PREEMPT_RT is fully merged in mainline
 - When performances allow
 - On a case-by-case basis for CPU architectures
- Dual kernel available when necessary
 - *Red core* infrastructure maintained
- Application / device driver split enforced
What Will Change? (1/2)

- A common application design to emerge

Transition from v2.x designs to Xenomai 3
What Will Change? (2/2)

- RTDM as a core-agnostic device model
Conclusion

- Xenomai is about *embedded systems*
- Dual kernel option is still relevant
- PREEMPT_RT option is an opportunity
 - To focus on the real-time *skins* again
 - To be even more relevant as a technology bridge
The End

Thank you for attending